Non-GPS Navigation Developed for GPS-Denied Environments 

Scientific Systems has extended and demonstrated its image-based solution during flight operations ranging from 25,000ft down to 200ft in response to upgraded EW capabilities By Abi Wylie / 26 Feb 2024

GPS Denied Navigation

Discover cutting-edge solutions from 6 leading global suppliers
SUPPLIER SPOTLIGHT
Non-GPS Navigation Developed for GPS-Denied Environments
Follow DA

Scientific Systems, an industry leader in advanced artificial intelligence for defense applications, is continuing development of ImageNav™, the company’s non-GPS, image-based, precision navigation software. 

The company has recently extended and demonstrated its image-based GPS-denied navigation solution during flight operations ranging from 25,000 feet down to 200 feet. ImageNav has been developed for over a decade with funding totaling more than $45 million.

For many air vehicle flights, the military relies on the Global Positioning System (GPS) for navigation, risking exposure to electronic jamming in contested environments. News outlets have reported that certain countries have significantly upgraded their electronic-warfare capabilities and have disabled sophisticated missiles by scrambling their GPS coordinates.

ImageNav provides accurate navigation, without GPS, for a range of systems, including weapons, aircraft, and uncrewed aircraft systems (UAS).

ImageNav software computes both absolute and relative navigation position updates by fusing the output of three different algorithms: stereo terrain correlation, image-based feature matching, and feature-based velocity estimation. Stereo terrain correlation collects a series of overlapping images from a flight path using an onboard electro-optical (EO) or infrared (IR) digital camera. 

Absolute position fixes are computed by correlating stereo elevation models from the captured imagery with stored terrain references to determine the precise geo-location. Image-based feature matching matches image features in captured imagery with stored image references. Lastly, feature-based velocity estimation tracks image features from frame to frame to constrain inertial navigation drift between position updates. 

ImageNav uses all three of these algorithms, running in parallel, to produce a robust, GPS-like position that is immune to jamming.

ImageNav runs entirely “at-the-edge” with minimal size, weight and power requirements. It can be integrated onto air platforms with existing sensors and processors as a software only upgrade, as software on a stand-alone processor board, or as a self-contained hardware payload (e.g. camera, processor, inertial measurement unit (IMU)).

Scientific Systems has multiple efforts underway to integrate ImageNav onto GPS-guided munitions and UASs, enabling them to operate in GPS-denied environments. A recent live weapon drop test demonstrated that ImageNav can navigate a weapon during flight, without GPS, enabling it to hit the target within the required performance envelope.

“ImageNav is an innovative, compact solution that helps air vehicles generate accurate position fixes in the most challenging environments,” said Tom Frost, Senior VP of the Products Division at Scientific Systems. “Recent reports of successful efforts to jam weapons and aircraft that rely on GPS underscore the immediate need to develop a reliable non-GPS guidance system.”

Posted by Abi Wylie Edited by Abigail Wylie, Editor and Copywriter experienced in digital media with a keen interest in ocean science technology. Connect & Contact

Latest Articles

MKS Instruments Unveils Ophir® SupIR 10-135mm f/1.8 Continuous Zoom MWIR Lens

MKS Instruments has introduced a motorized MWIR lens with 14x zoom, enabling high-resolution thermal imaging and long-range target detection in defense and security applications

Apr 22, 2025
GuideNav Highlights the Role of IMUs for Loitering Systems

GuideNav outlines how inertial measurement units support navigation and targeting in loitering munitions, with attention to key performance metrics and mission-specific requirements

Apr 22, 2025
Software Solutions for Drones in Defense & Security

Defense Advancement highlights Tilak's innovative software solutions designed for the defense and security sectors, with a focus on drone and robotics applications

Apr 22, 2025
Advancing Maritime Autonomy with Scalable Uncrewed Integration

Textron Systems aims to lead the future of maritime autonomy with advanced uncrewed integration, looking into their TSUNAMI™ family of autonomous maritime surface vessels

Apr 22, 2025
Quadratix: Unified Software Ecosystem from General Atomics

Quadratix, a General Atomics vertically integrated software enterprise, aims to deliver agile, interoperable solutions that bridge air, land, sea, cyber, and space operations

Apr 17, 2025
Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025

Featured Content

Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025
Textron Systems to Support Software & Payload Development for Navy’s MCM USV

Textron Systems is set to support the software development and payload integration for the Navy’s Mine Countermeasures (MCM) Unmanned Surface Vehicle (USV), focusing on future mission capabilities and advanced system integration

Apr 14, 2025
Triad RF Systems Supplies Bi-Directional Amplifiers to Boost Naval Communications

Taiwan has received dual-channel bi-directional amplifiers (BDAs) from Triad RF Systems, strengthening real-time data transmission and ISR functionality in unmanned naval platforms

Apr 11, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.