SSCI Conducts Autonomous Multi-Vehicle Defensive Counter Air Missions

Scientific Systems' autonomy software successfully directed multiple Avenger Unmanned Combat Air Vehicles (UCAV) through the execution of an Find, Fix, Track, Target, Engage, Assess (F2T2EA) mission in an air combat-relevant scenario By Joseph Macey / 19 Jan 2024

Discover Leading Defense Technology Solutions

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Live Fully Autonomous Multi-Vehicle Defensive Counter Air Missions
Follow DA

Scientific Systems Company, Inc. (SSCI) has successfully carried out multiple flight tests of its Collaborative Mission Autonomy (CMA) software running on a live General Atomics Aeronautical Systems, Inc. (GA-ASI) MQ-20 Avenger® Unmanned Combat Air Vehicle. 

In the flight tests, carried out in November 2023, CMA software commanded a mixed team of Live, Virtual, and Constructive (LVC) MQ-20 platforms to execute a fully autonomous multi-vehicle Defensive Counter Air mission. 

The tests used a mix of LVC platforms, sensors, and effectors to encompass all aspects of a realistic, operationally relevant F2T2EA (Find, Fix, Track, Target, Engage, Assess) air combat mission, including combat air patrol, detection, identification, tracking, targeting, and engagement of multiple targets throughout multiple scenarios.

Scientific Systems’ software was embedded onboard all the live, virtual, and constructive MQ-20 platforms, successfully managing the autonomous mission at the edge to compensate for communication and coordination challenges. Virtual and constructive elements of the scenario were modeled in the U.S. Air Force’s AFSIM (Advanced Framework for Simulation, Integration, and Modeling software environment). In support of these November flight tests, collaborative autonomy behaviors from Scientific Systems and other organizations were integrated into and orchestrated using a GFE (government-furnished equipment) autonomy software architecture enhanced by GA-ASI.

Scientific Systems’ Collaborative Mission Autonomy (CMA) software consists of AI (Artificial Intelligence) and ML (Machine Learning)-driven software for coordinating multi-vehicle decentralized mission execution. Scientific Systems’ algorithms use operator pre-mission inputs to generate tailored, coordinated flight behaviors that address mission objectives by optimizing aircraft positioning, engagement parameters, and defensive maneuvers. In-flight optimization algorithms running at the edge allow the CMA-driven uncrewed team to autonomously replan and re-coordinate their tasking and positioning, even when disconnected from their human operators, to account for dynamically changing mission constraints. In previous demonstrations, CMA handled a variety of unpredictable in-flight circumstances and contingencies such as communication outages, lost teammates, and enemy threat positioning. 

“Together with GA-ASI, we’re focused on the rapid development, integration, testing, and demonstration of our collaborative autonomy behaviors,” said David “Heat” Lyons, Scientific Systems’ VP of Business Development and former F-16 Weapons Officer and combat fighter pilot. “Moreover, we’re convincingly demonstrating that our open architecture software works not just in a simulation environment but works to command a live and operationally relevant Group 5 platform like the MQ-20 Avenger, in combat representative operating conditions.”

The November flight tests are just the latest instance of Scientific Systems successfully integrating and demonstrating its collaborative mission autonomy software on third-party platforms in operational contexts of relevance to the U.S. Department of Defense. Earlier Scientific Systems test flight programs have successfully demonstrated a variety of air-to-ground, and ground support missions.

Posted by Joseph Macey Connect & Contact

Latest Articles

Leveraging Modularity for Operational Agility in Defense Applications

MilDef outlines how modularity ensures that defense forces can respond rapidly to evolving operational requirements while maintaining system longevity and performance consistency

Apr 23, 2025
Rugged Supercomputing Solutions Company Receives AI Excellence Award

Aitech has won an Artificial Intelligence Excellence Award for the A230 Vortex rugged AI supercomputer, designed to meet growing demands for higher power and enhanced efficiency

Apr 23, 2025
GA-ASI Advances 3D Printing for Small & Medium-Altitude UAS

General Atomics Aeronautical Systems, Inc. (GA-ASI) has completed a full UAS airframe using metal additive manufacturing, advancing 3D printing applications in partnership with the Department of Defense

Apr 23, 2025
Advanced Passive Acoustic Monitoring Systems for Defense & Maritime Security

Defense Advancement showcases Ocean Sonic's range of passive underwater acoustic monitoring solutions for military, naval and security applications

Apr 23, 2025
MKS Instruments Unveils Ophir® SupIR 10-135mm f/1.8 Continuous Zoom MWIR Lens

MKS Instruments has introduced a motorized MWIR lens with 14x zoom, enabling high-resolution thermal imaging and long-range target detection in defense and security applications

Apr 22, 2025
GuideNav Highlights the Role of IMUs for Loitering Systems

GuideNav outlines how inertial measurement units support navigation and targeting in loitering munitions, with attention to key performance metrics and mission-specific requirements

Apr 22, 2025

Featured Content

Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025
Textron Systems to Support Software & Payload Development for Navy’s MCM USV

Textron Systems is set to support the software development and payload integration for the Navy’s Mine Countermeasures (MCM) Unmanned Surface Vehicle (USV), focusing on future mission capabilities and advanced system integration

Apr 14, 2025
Triad RF Systems Supplies Bi-Directional Amplifiers to Boost Naval Communications

Taiwan has received dual-channel bi-directional amplifiers (BDAs) from Triad RF Systems, strengthening real-time data transmission and ISR functionality in unmanned naval platforms

Apr 11, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.